S90.09 ${ }^{\text {Q\&As }}$

SOA Design \& Architecture Lab

Pass SOA S90.09 Exam with 100\% Guarantee

Free Download Real Questions \& Answers PDF and VCE file from:
https://www.pass4itsure.com/s90-09.html

100\% Passing Guarantee
100\% Money Back Assurance

Following Questions and Answers are all new published by SOA Official Exam Center

앙Instant Download After Purchase
© 100% Money Back Guarantee
웅 365 Days Free Update
(3) 800,000+ Satisfied Customers

VCE \& PDF
Pass4itSure.com

QUESTION 1

Service A is an entity service that provides a Get capability that returns a data value that is frequently changed.
Service Consumer A invokes Service A in order to request this data value (1). For Service A to carry out this request, it must invoke Service $B(2)$, a utility service that interacts (3.4) with the database in which the data value is stored. Regardless of whether the data value changed, Service B returns the latest value to Service A (5), and Service A returns the latest value to Service Consumer A (6).

The data value is changed when the legacy client program updates the database (7) When this change happens is not predictable. Note also that Service A and Service B are not always available at the same time.

Any time the data value changes. Service Consumer A needs to receive it as soon as possible. Therefore, Service Consumer A initiates the message exchange shown in the Figure several times a day. When it receives the same data value as before, the response from Service A is ignored. When Service A provides an updated data value, Service Consumer A can process it to carry out its task.

The current service composition architecture is using up too many resources due to the repeated invocation of Service A by Service Consumer A and the resulting message exchanges that occur with each invocation. What steps can be taken to solve this problem?
A. The Event-Driven Messaging pattern can be applied by establishing a subscriber- publisher relationship between Service A and Service B. This way, every time the data value is updated, an event is triggered and Service B, acting as the publisher, can notify Service A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service A and Service B so that the event notification message sent out by Service B will be received by Service A, even when Service A is unavailable.
B. The Event-Driven Messaging pattern can be applied by establishing a subscriber- publisher relationship between

Service Consumer A and Service A. This way, every time the data value is updated, an event is triggered and Service A, acting as the publisher, can notify Service Consumer A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service Consumer A and Service A so that the event notification message sent out by Service A will be
received by Service Consumer A, even when Service Consumer A is unavailable.
C. The Asynchronous Queuing pattern can be applied so that messaging queues are established between Service A and Service B and between Service Consumer A and Service A. This way, messages are never lost due to the unavailability of Service A or Service B.
D. None of the above.

Correct Answer: D

QUESTION 2

You are told that in this service composition architecture, all four services are exchanging invoice-related data in an XML format. The services in Service Inventory A are standardized to use a specific XML schema for invoice data. Design standards were not applied to the service contracts used in Service Inventory B, which means that each service uses a different XML schema for the same kind of data. Database A and Database B can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML formatted data. What steps can be taken to enable the planned data exchange between these four services?

A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic
and Database A and between the Service D logic and Database B.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C and between Service C and Service D. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between
the Service B logic and Database A and between the Service D logic and Database B.
C. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service C. The Protocol Bridging pattern can be applied so that protocol bridging logic is positioned between Service A and Service B and between the Service C and Service D. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
D. None of the above.

Correct Answer: A

QUESTION 3

Upon reviewing these requirements it becomes evident to you that the Orchestration compound pattern will need to be applied. However, there are additional requirements that need to be fulfilled. To build this service composition architecture, which patterns that is not associated with the Orchestration compound pattern need to also be applied? (Be sure to choose only those patterns that relate directly to the requirements described above. Patterns associated with the Orchestration compound pattern include both the required or core patterns that are part of the basic compound pattern and the optional patterns that can extend the basic compound pattern.)
A. Atomic Service Transaction
B. Compensating Service Transaction
C. Data Format Transformation
D. Data Model Transformation
E. Event-Driven Messaging
F. Intermediate Routing
G. Policy Centralization
H. Process Centralization
I. Protocol Bridging
J. Redundant Implementation
K. Reliable Messaging
L. Service Data Replication
M. State Repository

Correct Answer: CL

QUESTION 4

Service Consumer A invokes Service A (1). The logic within Service A is required to retrieve three independent data values from Services B, C, and D and to then return these data values back to Service Consumer A.

To accomplish this, Service A begins by sending a request message to Service B (2). After receiving a response message with the first data value from Service B, Service A sends a request message to Service C (3). After it receives a response message with the second data value from Service C, Service A then sends a request message to Service D (4). Upon receiving a response message with the third data value from Service D. Service A finally sends its own response message (containing all three collected data values) back to Service Consumer A.

Service Consumer A and Service A reside in Service Inventory A. Service B and Service C reside in Service Inventory B. Service D is a public service that can be openly accessed via the World Wide Web. The service is also available for purchase so that it can be deployed independently within IT enterprises.

Due to the rigorous application of the Service Abstraction principle within Service Inventory B, the only information that is made available about Service B and Service C are the published service contracts. For Service D, the service contract plus a Service Level Agreement (SLA) are made available. The SLA indicates that Service D has a planned outage every night from 11 PM to midnight.

You are an architect with a project team building services for Service Inventory A. You are told that the owners of Service Inventory A and Service Inventory B are not generally cooperative or communicative. Cross-inventory service composition is tolerated, but not directly supported. As a result, no SLAs for Service B and Service C are available and you have no knowledge about how available these services are. Based on the service contracts you can determine that the services in Service Inventory B use different data models and a different transport protocol than the services in Service Inventory A. Furthermore, recent testing results have shown that the performance of Service D is highly unpredictable due to the heavy amount of concurrent access it receives from service consumers from other organizations. You are also told that there is a concern about how long Service Consumer A will need to remain stateful while waiting for a response from Service A. What steps can be taken to solve these problems?
A. The Event-Driven Messaging pattern is applied so that a subscriber-publisher relationship is established between Service Consumer A and Service A. This gives Service A the flexibility to provide its response to Service Consumer A whenever it is able to collect the three data values without having to require that Service Consumer A remain stateful.

The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C. The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B and between Service A and Service C . The Redundant Implementation pattern is applied so that a copy of Service D is brought in- house and made part of Service Inventory A.
B. The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C and so that a separate messaging queue is positioned between Service A and Service Consumer
C. The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern is applied so that a copy of Service D is brought in- house for fail-over purposes. The Legacy Wrapper pattern is further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory
A. This wrapper utility service first attempts to access the external service, but if that service is
unavailable it will access the redundant internal service instead.
D. The Reliable Messaging pattern is applied so that a system of acknowledgements is established between Service Consumer A and Service A. This gives Service A the flexibility to provide Service Consumer A with acknowledgements that indicate that the processing steps that are occurring between Service A and Service B, Service C, and Service D are progressing. The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C and between Service A and Service D. The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B and between Service A and Service C .
E. None of the above.

Correct Answer: B

QUESTION 5

Service A is an orchestrated task service that is invoked by a separate composition initiator (1) and then sends a request message to Service C (2). Service C queries Database B to retrieve a large data record
(3) and provides this data in a response message that is sent back to Service A. Service A temporarily stores this data in a central state database (4) and then sends a request message to Service D (5), which accesses a legacy system API to retrieve a data value (6). Service D then sends this data value in a response message back to Service A. The data in the state database is subsequently retrieved by Service $A(7)$ and merged with the newly received data value. This combined data is written to Database A (8), which triggers an event that results in the invocation of Service B (9).

Service B is an orchestrated task service that sends a request message to Service D (10). which accesses a legacy system API to retrieve a data value (11) and then sends this data value in a response message back to Service B. Service B temporarily stores this data in a central state database (12) and then sends a request message to Service E (13), which performs a runtime calculation and then responds with the calculated data value back to Service B. The data in the state database is then retrieved by Service B(14) and merged with the calculated data value. Service B then uses the merged data to complete its business task.

The following specific problems and requirements exist:

Service B
Upon reviewing these requirements it becomes evident to you that the Enterprise Service Bus compound
pattern will need to be applied. However, there are additional requirements that need to be fulfilled. To build this service composition architecture, which patterns that is not associated with the Enterprise Service Bus compound pattern need to also be applied? (Be sure to choose only those patterns that relate directly to the requirements described above. Patterns associated with the Enterprise Service Bus compound pattern include both the required or core patterns that are part of the basic compound pattern and the optional patterns that can extend the basic compound pattern.)
A. Atomic Service Transaction
B. Compensating Service Transaction
C. Data Format Transformation
D. Data Model Transformation
E. Event-Driven Messaging
F. Intermediate Routing
G. Policy Centralization
H. Process Centralization
I. Protocol Bridging
J. Redundant Implementation
K. Reliable Messaging

VCE \& PDF
https://www.pass4itsure.com/s90-09.html
2024 Latest pass4itsure S90.09 PDF and VCE dumps Download
L. Service Data Replication
M. State Repository

Correct Answer: HLM

S90.09 VCE Dumps
S90.09 Study Guide
S90.09 Exam Questions

