

S90.09^{Q&As}

SOA Design & Architecture Lab

Pass SOA S90.09 Exam with 100% Guarantee

Free Download Real Questions & Answers **PDF** and **VCE** file from:

https://www.pass4itsure.com/s90-09.html

100% Passing Guarantee 100% Money Back Assurance

Following Questions and Answers are all new published by SOA Official Exam Center

Instant Download After Purchase

100% Money Back Guarantee

😳 365 Days Free Update

800,000+ Satisfied Customers

QUESTION 1

Service A is a task service that sends Service B a message (2) requesting that Service B return data back to Service A in a response message (3). Depending on the response received. Service A may be required to send a message to Service C (4) for which it requires no response.

Before it contacts Service B, Service A must first retrieve a list of code values from its own database (1) and then place this data into its own memory. If it turns out that it must send a message to Service C, then Service A must combine the data it receives from Service B with the data from the code value list in order to create the message it sends to Service C. If Service A is not required to invoke Service C, it can complete its task by discarding the code values.

Service A and Service C reside in Service Inventory A. Service B resides in Service Inventory B.

You are told that the services in Service Inventory A were designed with service contracts based on different design standards than the services in Service Inventory B. As a result, Service A and Service B use different data models to represent the data they need to exchange. Therefore, Service A and Service B cannot currently communicate. Furthermore, Service C is an agnostic service that is heavily accessed by many concurrent service consumers. Service

C frequently reaches its usage thresholds during which it is not available and messages sent to it are not received. How can this service composition architecture be changed to avoid these problems?

A. The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.

B. The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service C so that when Service A needs to send a message to Service C, the queue will store the message and retransmit it to Service C until it is successfully delivered. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.

C. The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Statelessness principle can be applied with the help of the State Repository pattern so that Service A can write the code value data to a state database while it is waiting for Service B to respond.

D. None of the above.

Correct Answer: B

QUESTION 2

You are an architect with a project team building services for Service Inventory A . You are told that no SLAs for Service B and Service C are available. You cannot determine how available these services will be, but it has been confirmed that both of these services support atomic transactions and the issuance of positive and negative acknowledgements. However, you also find out that the services in Service Inventory B use different data models than the services in Service Inventory A. Furthermore, recent testing results have shown that the performance of Service D is steady and reliable. However, Service D uses a different transport protocol than the services in Service Inventory A. The response time of Service A is not a primary concern, but Service Consumer A does need to be able to issue request messages to Service A 24 hours a day without disruption. What steps can be taken to fulfill these requirements?

A. The Event-Driven Messaging pattern is applied so that a subscriber-publisher relationship is established between Service Consumer A and Service A. This gives Service A the flexibility to provide its response to Service Consumer A whenever it is able to collect the three data values without having to require that Service Consumer A remain stateful. The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C. The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B and between Service C. The Service Autonomy principle is further applied to Service A in order to improve its overall runtime behavioral predictability.

B. The Reliable Messaging pattern is applied so that a system of acknowledgements is established between Service Consumer A and Service A . This gives Service A the flexibility to provide Service Consumer A with acknowledgements that indicate that the processing steps that are occurring between Service A and Service B, Service C, and Service D are progressing. The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C and between Service A and Service D . The Redundant Implementation pattern is applied so that a copy of Service D is brought in-Upon reviewing these requirements it becomes D with a standardized service contract that is in compliance with the design standards used in Service Inventory A.

C. The Asynchronous Queuing pattern is applied so that a central messaging queue is positioned between Service A and Service B and between Service A and Service C and between Service A and Service D and so that a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation pattern is applied to enable communication between Service A and Service B and between Service A and Service C. The Protocol Bridging pattern is applied to enable communication between Service A and Service D.

D. None of the above.

Correct Answer: C

QUESTION 3

Service A. Service B. and Service C are each designed to access the same shared legacy system. The service contracts for Service A, Service B, and Service C are standardized and decoupled from the underlying service logic. Service A and Service B are agnostic services that are frequently reused by different service compositions. Service C is a non- agnostic task service that requires access to the legacy system in order to retrieve business rules required for the service to make runtime decisions that determine its service composition logic. The legacy system uses a proprietary file format that Services A, B, and C need to convert to and from.

Service A is an agnostic utility service that is used by other services to gain access to the legacy system. Services B and C were not designed to access the legacy system via Service A because the Service A service contract was derived from the legacy system API and is therefore not standardized and exhibits negative contract-to-implementation coupling. You are told that additional services need to be created, all of which need access to the legacy system. You are also told that the legacy system may be replaced in the near future. What steps can be taken to ensure that the

replacement of the legacy system has a minimal impact on Services B and C and any future services that are designed to rely upon it?

A. The Service Abstraction, Service Reusability, and Service Autonomy principles need to be applied in order to support the application of the Official Endpoint pattern to Service A. This would position Service A as the official utility service through which the legacy system can be accessed. Service B will need to be redesigned to access Service A instead of accessing the legacy

system directly. Due to the dependency on business rules embedded within the legacy system the

option of applying the Rules Centralization pattern is not available. Service C will therefore need to

continue accessing the legacy system directly.

B. The Standardized Service Contract and Service Loose Coupling principles can be applied in order to establish a standardized service contract for Service A that will eliminate its negative contract coupling. Service B will need to be redesigned to access Service A instead of accessing the legacy system directly. Due to the dependency on business rules embedded within the legacy system the option of applying the Rules Centralization pattern is not available. Service C will therefore need to continue accessing the legacy system directly.

C. The Legacy Wrapper pattern can be applied together with the Standardized Service Contract principle in order to establish a standardized service contract for Service A that will eliminate its negative contract coupling. The Official Endpoint pattern can then be applied to position Service A as the official utility service through which the legacy system can be accessed. Services B and C will need to be redesigned to access Service A instead of accessing the legacy system directly.

D. None of the above.

Correct Answer: C

QUESTION 4

Services A, B, and C are non-agnostic task services. Service A and Service B use the same shared state database to defer their state data at runtime.

An assessment of these three services reveals that each contains some agnostic logic, but because it is bundled together with the non-agnostic logic, the agnostic logic cannot be made available for reuse.

The assessment also determines that because Service A and Service B and the shared state database are each located in physically separate environments, the remote communication required for Service A and Service B to interact with the shared state database is causing an unreasonable decrease in runtime performance.

How can the application of the Orchestration pattern improve this architecture?

A. The application of the Orchestration pattern will result in an environment whereby the State Repository and Service Data Replication patterns are naturally applied, allowing the shared state database to be replicated for Services A and B so that each task service can have its own dedicated state database. The Process Centralization pattern can also be applied to Services A and B, so that their logic is physically centralized, turning them into orchestrated task services.

B. The application of the Orchestration pattern will result in an environment whereby the Process Abstraction and Process Centralization patterns are naturally applied to Services A, B, and C, resulting in a clean separation of non-agnostic task services from newly designed agnostic services with reuse potential. Also, the State Repository pattern can be applied by the availability of a central state database that can be shared by Services A and

C. This database can be made available as a local part of the environment so that Services A and B can avoid remote communication.

D. The application of the Orchestration pattern will result in an environment whereby the Compensating Service Transaction is naturally applied, resulting in the opportunity to create sophisticated exception logic that can be used to compensate for the performance problems caused by Services A and B having to remotely access the state database. The Process Abstraction and Service Broker patterns are also naturally applied, enabling the separation of non-agnostic logic and agnostic logic while providing common transformation functions required to overcome any disparity in the service contracts that will need to be created for the new agnostic services.

E. None of the above.

Correct Answer: B

QUESTION 5

Service Consumer A sends a message to Service A. There are currently three duplicate implementations of Service A (Implementation 1, Implementation 2, Implementation 3).

The message sent by Service Consumer A is intercepted by Service Agent A (1), which determines at runtime which implementation of Service A to forward the message to.

All three implementations of Service A reside on the same physical server.

You are told that despite the fact that duplicate implementations of Service A exist, performance is still poor at times. Also, you are informed that a new service capability will soon need to be added to Service A that will introduce functionality that will require access to a shared database that is used by many other clients and applications in the IT enterprise. This is expected to add further performance demands on Service A . How can this service architecture be changed to improve performance in preparation for the addition of the new service capability?

A. The Standardized Service Contract principle is applied to ensure that the new service capability extends the existing service contract in a manner that is compliant with current design standards. The Redundant Implementation pattern is applied to establish separate implementations of Service A that include duplicate databases with copies of the data that Service A requires from the shared database.

B. The Service Autonomy principle is applied to further isolate the individual implementations of Service A by separating them onto different physical servers. When the new service capability is added, the Service Data Replication pattern is applied to give each implementation of Service A its own copy of the data it requires from the shared database.

C. The Service Loose Coupling principle is applied together with the Standardized Service Contract principle to ensure that Service Consumer A is not indirectly coupled to the shared database after the new service capability is added to the

service contract. The Legacy Wrapper pattern can be applied to establish a new utility service that will provide standardized data access service capabilities for the shared database.

D. None of the above.

Correct Answer: B

S90.09 VCE Dumps

S90.09 Study Guide

S90.09 Braindumps